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Adjusted Forms of the Fourier Coefficient Asymptotic 
Expansion and Applications in Numerical Quadrature* 

By J. N. Lyness 

Abstract. The conventional Fourier coefficient asymptotic expansion is derived by means 
of a specific contour integration. An adjusted expansion is obtained by deforming this 
contour. A corresponding adjustment to the Euler-Maclaurin expansion exists. The effect 
of this adjustment in the error functional for a general quadrature rule is investigated. It 
is the same as the effect of subtracting out a pair of complex poles from the integrand, using 
an unconventional subtraction function. In certain applications, the use of this subtraction 
function is of practical value. 

An incidental result is a direct proof of Erdelyi's formula for the Fourier coefficient 
asymptotic expansion, valid when f(x) has algebraic or logarithmic singularities, but is 
otherwise analytic. 

1. The Fourier Coefficient Asymptotic Expansion. The Fourier coefficient 
asymptotic expansion (F.C.A.E.) (1.3) below is a classical formula which is elementary 
to derive using a standard application of the formula for integration by parts, namely, 

(1 .1) b(x)ekx dx = 
b f (b) - ekaf(a) e dx. 

The integral on the right is almost the same as that on the left; the only difference 
is that f'(x) replaces f(x). Consequently, the formula may be applied iteratively. 
So long as 

(1.2) f(x) E C [a, b,], 

this leads to the following series: 

fb t(x)e$kx dx = -e f(b) + i2 f'(b) + ... + f (b) 

(1.3) + e ik f(a) + 12 f'(a) + * * * + (a) 

ip ob 

+ ' j f (p)(x)eikx dx. 

This series is equally familiar in the form it takes for a Fourier coefficient. If we 
set a = 0, b = 1, k = 27rm, collect the final terms in the series in the remainder, and 
separate real and imaginary parts, we find 

rl~~~~~~~~[v 1 (-)/2] 
(1.4) 2C't'I 2 K ( x )s2 K2+,0 (1.4) 2 f = 2 f(x) cos 2irmx dx = E + 2Cp7 f I 

Received February 5, 1970, revised July 8, 1970. 
AMS 1969 subject classificationzs. Prim-ary 4210, 6555; Secondary 4208. 
Key words and phrases. Fourier coefficients, Euler-Maclaurin summation formula, Fourier 

coefficient asymptotic expansion, numerical quadrature, subtracting out singularities. 
* Work performed under the auspices of the U. S., Atomic Energy Commission. 

Copyright ? 1971, American Mathematical Society 

87 



88 J. N. LYNESS 

S(M) f = 
1 

U (p-2)/2 ] 

(1.5) 2S(m)f = 2] f(x) sin 27rnx dx = E+ n 2Srnf 

where 

(1.6) K2= 2(_ 1)a-1(f(2q-1)(1) _ f(2--1)(O))/(27r)2q, 

K2Q+1 = 2(-)Qa-1(f(2a)(1) - f(2a)(o))/(27r)2Q+1 

and the remainder terms 2C,m)f and 2S(m)f are of order m-' for large m. 
By allowing p to become infinite in series such as (1.3), (1.4), and (1.5), we obtain 

expansions that we refer to as Fourier coefficient asymptotic expansions. When f(x) 
is a specified polynomial, these expansions terminate, leaving a closed expression 
for the trigonometric integral. More generally, when f(x) is a function which is 
simple to differentiate, these expansions appear at first sight to provide a reasonable 
basis for the numerical evaluation of the integral. In practice, this appearance is 
most deceptive. In Lyness [4, Section 4], several illustrations are given in which the 
most inconvenient behavior is manifest. Perhaps the most flamboyant example is 

(1.7) f(x) = eaz + eD2z latI < m, 

for which the expansion converges to a result different from 2C("'f. However, the 
F.C.A.E. is generally divergent. For large values of m, the early terms in the series 
have the numerical appearance of a convergent series, but later terms increase in 
magnitude. Here again, the situation may be deceptive. In the example with m = 6 and 

(1.8) f(x)- l/(x2 -x + 0.26), 

the magnitude of the terms in (1.4) initially decreases but then increases. The smallest 
term is the eighth, which is about - 10-9. Terminating the series after the qth term, 
5 ? q g 15, results in an approximation of -2.023 X 10'. The true value of C(6"f 
is +0.701. 

It is hardly surprising that an asymptotic expansion having such disconcerting 
numerical properties is rarely used for numerical calculation. One of the annoying 
aspects of the situation is that the elementary derivation of the series given above 
does not indicate at all clearly the source of this "unreliability." In Section 2 we 
give a different proof of (1.3) based on contour integration. This proof is valid when 
f(x) is an analytic function that has an analytic continuation f(z) regular in a region aR 
of the complex plane which contains the interval of integration. The proof relates 
the remainder term to the analytic properties of f(z) in a manner in which the principal 
contributions to the remainder term can be recognized. In very simple cases an 
important part of this "error" can be "subtracted out". 

The series (1.3) exists so long as f(x) satisfies restriction (1.2), i.e., has continuous 
derivatives of orders zero through p. However, if f(x) fails to satisfy (1.2), Eq. (1.3) 
is not generally valid. If f(x) has a finite number of algebraic singularities on an 
interval but otherwise has continuous derivatives of orders zero through p, a different 
analogous series exists. This series may be constructed by treating each interval 
between adjacent singularities separately and combining the result. Between two 
such singularities, located for convenience at a and b, the function f(x) takes the form 

(1.9) f(x) = (x - a)a(b - x)'h(x), af, > -1, 



FOURIER COEFFICIENT ASYMPTOTIC EXPANSION 89 

where a and ,B are not in general integers, and 

h(x) C C(P)[a, b]. 

A result that corresponds to (1.3) was given by Erd6lyi [1] in 1954. The derivatives 
of f(x) at a and b are replaced by derivatives of {V(x) and O(x), the 'regular parts' of 
f(x) at a and at b, respectively. These functions are defined by 

(1.10) *(x) = (b - x)'h(x), +(x) = (x - a)ah(x). 

The coefficients in (1.3) and the indices are also adjusted. The resulting asymptotic 
expansion is as follows: 

THEOREM 1.12. If f(x) is given by (1.9), {(x) and ?(x) are defined by (1.10), and if 

(1.11) h(x) E A[a, b], 

then for k > 0 
b f(x) e21dx eikbi /2 , i(b) iq+l(q + d)! 

aa=? k(k+8+1 q' 

(1.12) t--j+ira12 Vt(')(a) ij+l(q + a)! 
q=o k' q! 

+ O 0+l + 0(k- P2+0+1)) ask a), 
for 

P1, P2 _ 0. 

This result reduces to (1.3) when a and : are either zero or integers. 
The theorem just stated requires that h(x) be analytic in a region (R that contains 

the interval [a, b]. In fact, a stronger form of this theorem is valid. 
THEOREM 1.13. Theorem 1.12 is valid if restriction (1.11) is replaced by 

(1.13) h(x) E C(P) [a, b], 

tunder the additional restriction 

(1.14) P1, P2 -: P. 

Naturally, Theoren 1.12 is a direct corollary of Theorem 1.13. 
The author has seen two proofs of this theorem. The first, in 1954 (Erdelyi [1]), 

generalizes the technique of integration by parts (1.1) making use of neutralizer 
functions. The second (Lighthill [2]) uses the theory of generalized functions. Unless 
the reader is familiar with these concepts, it is difficult to acquire from the proofs 
any idea about the magnitude of the remainder term, apart, of course, from its order. 

For readers interested in the specific case in which f(x) is an analytic function, 
Theorenm 1.12 is sufficient. In this case, a proof can be based on generally more 
familiar concepts. The result is obtained by use of contour integration and the re- 
mainder term appears as the sum of specific contour integrals of well-defined functions. 
Besides showing the order (for large k) of the remainder term, the proof gives at 
least a rough idea of its magnitude for specified finite values of k. 

The proof and the theorem may be adjusted to cover the case in which f(x) has 
a logarithmic singularity. This is described in the Appendix. 
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2. Proof of Theorem 1.12. In this section, we prove Theorem 1.12. Here f(x), 
h(x), O&(x), and +(x) are real functions of a real variable, defined as in (1.9) and (1.10). 
In addition, each has an analytic continuation into the complex plane. The function 
h(z) is regular (has no singularities) within a region 6R that contains the rectangle 
with vertices a i iL, b i iL where L is a positive constant. If the singularities of h(z) 
lie at X, i il/, clearly, 

(2.1) L < M= min ,uf. 

For convenience we subdivide the proof into four lemmas. The proof of each 
lemma is straightforward. 

LEMMA 2.1. 
b a+iL b 

(2.2) J f(x)e dx - J f(z)e2kz dz + J f(z)ekz dz + O(ekL) as k - o 
a a b~~~~~~~~+iL 

(Unless stated otherwise, all integrals in this paper are along straight-line contours.) 
Since f(z)e"k' is regular within the rectangle mentioned above, the contour between 

a and b may be deformed and the integral replaced by the sum of three integrals, 
connecting successively a, a + iL, b + iL, b. The right-hand side of (2.2) includes 
two of these explicitly. To establish Lemma 2.1, we have to show that the third 
integral, that which connects a + iL and b + iL, is of the stated order O(e- L). 

We define 

(2.3) NL = max lf(x + iL)l 
aS5 xSb 

Then, using elementary inequalities, we have 

(2.4) ]IL f(z)kz dz| = ezkL f f(x + iL)etkzi dx < (b - a)ONLekL 

This establishes Lemma 2.1. 
The next lemma deals with the effect of replacing f(z) in the neighborhood of a 

by an approximation g(z) based on the first p terms of the Taylor expansion of the 
regular part of f(z). We define g(z) as 

(2.5) g(z) = (z - a)a('(a) + (z - a)0'(a) + * + (z - a)P1 (p (a)) 
(p -) 

LEMMA 2.2. 
a+iL a+iL 

(2.6) j f(z)e" dz = J g(z)e'kz dz + O(k-1) 

An elementary application of the mean value theorem indicates that at all points 
z = a + iy, the value of &(z) differs from the sum of the first p terms in its Taylor 
expansion by an amount whose modulus is less than yP^//<P(a + it)/pl where 0 < 
t ? y. Consequently, the function 

(2.7) r(z) = f(z) - g(z) 

satisfies the inequality 

(2.8) (r(a + iy) < lyl?+' Ml/p!, 0 < y < L, 
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where 

(2.9) M, = max IVI(v)(a + iGL)I 
0OS 1 

Thus, 
a+i L (L 

LA r(z)e'kz dz = eika r(a + iy)ek*vi dy 

(2.10) - yp+Y e- dy < ! f y e- dy 

- 9_ I tP+ae-L dt 

This establishes Lemma 2.2. 
Next, we proceed to the evaluation of the integral on the right-hand side of (2.6). 

We now show 
LEMMA 2.3. 

ra+iL a+ ico 

(2.11) f+iL g(z)e dz = f+Ag(z)etkz dz + O(klekL) 

In view of the definition (2.5) of g(z), the difference between these two integrals 
may be expressed as 

(2.12) I g(z)e"k" dz = E 6'e"" I (z - a)Q+aeikz dz. 
a+iL O q. q a +iL 

Each of the integrals on the right-hand side may be expressed in terms of the in- 
complete gamma function r(Q + 1, x), defined by 

(2.13) r(,3 + , x)= f tet dt. 

Before doing this, we establish the order of r(, + 1, x) for large x. When -1 < , ' 0, 
the integrand in (2.13) is less than or equal to xe-t. Thus 

(2.14) r(P + 1, x) < x f e_t dt = xfe', 

so that 

(2.15) r(j3 + 1, x) ,O(xex), -1 < 0. 

For positive values of g, integration by parts of the integral in (2.13) leads to 

(2.16) rPG + 1, x) = xoe- + oBr(I, x). 

In view of (2.15), it follows that 

(2.17) r(1 + 1,x), O(xlez), j3> -1. 

If we set z = a + iy and t = ky and use (2.13), expression (2.12) may now be manipu- 
lated as follows: 

+i g(z)e dz = xE (a) eira/2eikaia+l JL Q+a ekv 

(2.18) a+iL ao0 q.1L 

= eit ca/21eika E (a) () r(a+ + q + 1 U). 
= q! kc++P(+q+1,k) 
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Since the incomplete gamma function is of order O((kL)a+ae-7L), the sum in (2.18) 
contains p terms, each of order k-le-kL, and so is itself of order k-le-kL. This estab- 
lishes Lemma 2.3. Finally, we require 

LEMMA 2.4. 

(2.19) I g(z)eikz dz = ei'r e/2e ika (a) r(a + q + ) 
a-0 q. ka+'a+l 

This lemma follows from (2.18) by setting L = 0 and noting from (2.13) that 

r(a + q + 1, 0) = r(a + q + 1). 

Proof of Theorem 1.12. The terms of orders O(e-kL), O(k- a-p-1) and O(k-le-kL) 

that occur in Lemmas 2.1, 2.2, and 2.3 are each of proper order to appear in the 
remainder term in (1.12). 

Lemmas 2.2, 2.3, and 2.4 successively reduce the first integral on the right in 
Lemma 2.1 to the terms in (1.12) involving derivatives of 4I(x) at x = a, together 
with contributions to the remainder term. A similar treatment of the second integral 
on the right in Lemma 2.1 leads to the other term in (1.12) involving derivatives 
of +(x) at x = b and other proper contributions to the remainder term. This establishes 
Theorem 1.12. 

We close with two comments on the proof. First, the use of the incomplete gamma 
function is a notational convenience only. All we require is that the integral in (2.13) 
be of order xI"e- for A > -1. No other properties are required. Secondly, the re- 
mainder term as derived here includes terms of order O(e-kL) and O(k-le-kL). Since, 
by (2.1), L may take any value less than M, the entire proof may be repeated with 
L' = (L + M)/2 instead of L to yield terms of order O(e-kL') and O(kle kL). 
Thus, these remainder terms are in fact o(e-kL) and o(k-le -L). However, the principal 
part of the remainder term is generally either O(ka+V1+l) or O(ka+v2+l), as stated 

3. The Remainder Term. In this section we discuss the Fourier coefficient asymp- 
totic expansion with a view to its possible application with finite k. To this end, 
we take a closer look at some of the features of the proof just presented. In the proof, 
the integral of f(x)e"kz along the real axis is replaced by a contour integral of f(z)etkz. 

The contour is arranged in such a way that, except for the terminal points a and b, 
it lies in the upper half-plane At any point x + iy on this contour, the contribution 
to the integral is proportional to 

(3,1) f(x + iy)eikxekv. 

For all points, except a and b, y is positive and (3.1) is of order e-kY and so may 
be relegated to the remainder term. To obtain the terms in the series, one considers 
only the parts of the contour immediately adjacent to a and to b. 

The first three lemmas may be restated as follows: 
LEMMA 3.1. 

b +iL 

L+L f(z)e dz = II O(e- 

LEMMA 3.2. 
1a+iL 

Xr(z)e ikz dz = I2 -_ 0(k-'-'-'). 
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LEMMA 3.3. 
a+ ico 

J g(z)e,k dz = I3 -' O(kllekL). 
a+iL 

Theorem 1.12 follows because the remainder term is equal to I, + I2 + I3 + 
I4 + I,, and all these contributions are of appropriate order. (I4 and I5 correspond 
to I2 and I3 and arise from the other terminal point b.) 

For finite values of k, it is the magnitude rather than the order of these con- 
tributions that is significant. Obviously, it is not feasible to evaluate these integrals. 
And the situation is further complicated by the fact that contours can be deformed, 
leading to different but analogous expressions. Contour deformations do not alter 
the value of the remainder term, but do redistribute the contributions among the 
components. 

Rather than continue this discussion in general terms, we look at the two examples 
(1.7) and (1.8) mentioned in Section 1. In the case of (1.8), f(z) has a pole at z = 
0.5 + (0.1)i. Consequently, I1 involves an integral whose contour passes within a 
distance 0.1 of the real axis. It follows that, at some point on this contour, If(z) > 
f(0.5) = 100. From (2.4), we see that we have estimated I, using IA < NLe&kL, where 
NL > 100. The numerical results mentioned after (1.8) refer to the case with m = 6. 
With k = 12r, L < 0.1 and NL > 100, this estimate gives very roughly that II, I 
100e'2 -- 2.5. This estimate is very poor. Actually, I, as defined in (3.1) is about 0.7. 
The true value of the Fourier coefficient is also about 0.7. The relegation of the 
term I, to the remainder leads to an estimate of -0.02 instead of 0.7 for the Fourier 
coefficient. 

In example (1.7), it is the contribution of the function eco 21Z which causes the 
numerical difficulty. For this function, I2 + I3 + I4 + I5 = 0 and I1 is identical 
with the original integral these being of order O(e kL). To treat I, as a remainder 
term renders the calculation meaningless. 

In other examples investigated by the author, it is the neglect of the contribution 
from I1-or the main part of the contour-which accounts mainly for misleading 
numerical results. This, unfortunately, cannot be rectified by including an additional 
term in the series, since I, is independent of p, the number of included terms. The 
effect of adding additional terms is to alter the definitions in I2 and I3, essentially 
reducing the order of I2 from O(k- -V-i) to O(k- a--2) and introducing into I3 
an extra term of the same order O(k1'e&kL) as the others. 

In general, the use of any truncated series for numerical calculation should be 
undertaken only if evidence is available that the numerical value of the remainder 
term is smaller than the required tolerance. These examples show that for the truncated 
F.C.A.E., a knowledge of the order of the remainder term is not sufficient. 

The foregoing discussion is set in terms of numerical calculation. In practice, 
this expansion is rarely used for numerical calculation directly. It is, however, used 
indirectly. The Euler-Maclaurin summation formula (5.3) below is an asymptotic 
expansion of the same nature, and may be derived by taking an infinite sum of 
different Fourier coefficient asymptotic expansions. And the derivation of numerical 
quadrature rules may be based on the Euler-Maclaurin summation formula. Thus, 
inconvenient behavior of the type mentioned above occurs also (but in a less critical 
manner) in numerical quadrature. 
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4. The F.C.A.E. Adjusted for a Single Pole. In the rest of this paper we develop 
a single theme. We suppose that the function f(z) has a pole at z = c = X :1: i,u 
where 0 < X < 1: ,u may be thought of as being small. In this case, L is small also, 
and for moderate values of k the expansion is unreliable. However, the proof could 
have been carried through using a larger value of L. The contour would then enclose 
the pole and an additional contribution, arising from the residue of f(z)eik at the 
pole, would appear in the remainder term. Since the precise value of this term is 
known, it can be included in the series to yield to an "adjusted" Fourier coefficient 
asymptotic expansion. 

In this section we derive this expansion. In the subsequent section we derive 
the corresponding "adjusted" Euler-Maclaurin expansion. Then, in the final section, 
we note the effect of this adjustment in the error functional for quadrature rules. 
It corresponds there to an unconventional method of subtracting out complex 
singularities. 

The behavior of this term is independent of whether or not f(z) has algebraic 
singularities at the end points a and b. It is convenient from this point on to consider 
only the regular case for the unit interval. We set 

(4.1) a = 0; b = 1; a = 3 = 0; k = 27rm; +t(x) = (x) = f(x). 

In this section, we use both k and 27rm as may be notationally convenient. The results 
apply in trivially modified form to the more general case. 

The configuration is then as follows. The function f(z) is regular in a region a 
that contains the rectangle with vertices ?iL, 1 +iL. There are poles of order X at 
z = c and at z = c, where 

(4.2) c=X + i', 0 < X < I > 0. 

With the exception of these poles, f(z) is regular in a larger region, which contains 
the rectangle having vertices =iL', 1 it iL'. There is a further singularity at 

(4.3) z = C' = A' + iM', O < A' < 1, M' > O. 

Apart from the poles at z = c and at z = e, C' is the nearest singularity to the real 
axis having a real part in the interval [0, 1]. We take L' > A. Thus 

(4.4) 0 < L < M = 1i < L' < M'. 

The derivation of the expansion in Section 2 gives a specific representation for the 
remainder term as a sum of contour integrals. This remainder term coincides with 
C'm)f + iS'm)f introduced in (1.3) and (1.4). 

In view of (4.1), we have 

(4.5) f(z) = g(z) + r(z) = h(z) + s(z), 

where 
p-i 

(4.6) g(Z) = E fq) (O)z/ql 
q-o 

p-l 

(4.7) h(z) = f (")(1)(z- 1)q/q!. 
U o 
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We define C"' (L)f and Sm"')(L)f as real numbers by 

iL iL 

C<m)(L)f + iS'm)(L)f = A g(z)ei' dz + r(z)etkz d 

(4.8) fo d 
,1l+iL r0 dz 

+ 
L f (z)eiX dz+ 

+i 
s(z)eikx dz + 

+i 
h(z)ei'k dza 

+ D f+iL s,+zj 

and then it follows from Section 2 that 

(4.9) C m)f + iS(m)f = Cv")(L)f + iS(")(L)f, 0 < L < M. 

The function of L defined by (4.8) takes the same value for all values of L in the 
interval (0, M), though, of course, the individual components on the right-hand 
side are generally different for different values of L. In fact, it is elementary to verify 
from (4.8) and (4.5) that 

(4.10) Cn) (L2)1 + iS(n)(L2) - 

C,m)(L1)f 
- iS(m)(Ll)f = if f(z)eikz dz, 

the contour R being the rectangle connecting the points iL,, iL2, 1 + iL2, 1 + iLl, iLl 
in that order, or, of course, any allowable deformation of this contour. If we choose 
L2 = L and L1 = L', where L and L' satisfy inequalities (4.4), the closed contour 
integral includes the pole at z = c. In view of (4.10), we find that 

(4.11) CM) f + iSvm)f = 
Cvm)(LP)f + iS(")(L1)f + 27ri Res (2irm), 

M < L' < M' 

where we have denoted by Res (k) the residue of f(z)eikz at the pole at z = c. 
The value of Res (k) is determined as follows., If f(z) has a pole of order w at 

z = c, then there exists an expansion 

(4.12) 1(z) > a,(z - c)'. 
r -X 

Similarly, 
co 

(4.13) e' = e , (ik)8(z - c)Y/s!. 
80- 

Res (k) is the coefficient of (z c)-1 in the product of these expressions, namely, 

(4.14) Res (k) = ei'k E a.r(ik)fi'/(r - 1)! 
r-i 

If f(z) has a simple pole (c = 1) and is of the form 

(4.15) f(z) = O(z)/(z - c)(z - 0 

then 

(4.16) Res (k) = a-ietk = O(c)eikc/2 iV 

We intend to adjust the asymptotic expansion by taking the term 2iri Res (2irm) 
out of the remainder term and treating it as part of the expansion. It must be empha- 
sized, however, that what we are doing is making an adjustment which has the effect 
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of removing terms of order O(ekL), L < M, from the remainder and replacing 
these by terms of order O(e"L ), L' < M', which are ultimately smaller. But the 
order of the remainder term, which is O(k-), remains unaltered. No justification 
is required for this procedure: in general, the addition of a term Ae"B to this asymp- 
totic expansion does not affect the expansion's validity. Our motivation for adding 
the particular term 2-ri Res (27rm) is simply that it appears that for finite k, the nu- 
merical value of the remainder will be reduced. Thus we conclude this section with 
a definition rather than a theorem. In fact, we need two definitions. 

Definition 4.17. A Fourier coefficient asymptotic expansion is denoted as standard 
if the order of the remainder term is higher than the order of any terms occurring 
in the expansion. 

Expansions (1.12), (1.4), and (1.5) are standard; expansion (1.3) fails to be 
standard, but would be if the final terms were taken into the remainder term. 

Definition 4.18. A Fourier coefficient asymptotic expansion is said to be adjusted 
for a pole of f(z) at z = c if a single term 2ri Res (k) is added into a standard ex- 
pansion for fl f(x)e"kx dx. 

Both definitions presuppose the conditions of Theorem 1.12. These are essentially 
that f(x) must be a real function of x, and that k must be real and positive. 

Adjusted forms of (1.4) and (1.5) are 
[ (v-1)/2J 

(4.19) 2C(m)f = 2+ Re 4iri Res (2irm) + 2C,(n)(L )f, 

l(p-2)/2]K 
(4.20) 2S(m)f / K I++ Im 4iri Res (27rm) + 2S(m)(L')f. 

q=o ,,q? 

It is possible, under these definitions, to adjust a standard expansion to obtain 
another standard expansion. This may happen in (4.19) if f(x) is periodic with period 1, 
in which case K2.= 0 and the order of C(i) is o(mk') for all k. 

One may adjust the expansion for more than one pole by simply adding several 
separate residue terms instead of one. 

Example. The following example, which was briefly mentioned in Section 3, 
illustrates the numerical effect of including the adjustment term in the F.C.A.E. 
This uses the function (1.8), namely 

(4.21) f(x) l/(x2 - x + 0.26). 

Here, a simple pole, having residue a-, = riM, is located at 

(4.22) c = X + i -0.5 + (0.l)i 

and, in view of (4.16), we find the adjustment term to be 

(4.23) Re (27ri Res (27rm)) = (7r/,u)(- I)re-T"/& 

The numbers below show the results obtained when a user attempts to calculate 
C('8f by evaluating partial sums of the F.C.A.E. using on one hand the standard 
series (1.4) and on the other hand the adjusted series (4.19). 

The correct result is 

(4.24) C6) - 0.704033694 
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TABLE 1 

qth term in (1.4) qth partial sum qth partial sum 
q or in (4.19) in (1.4) in (4.19) 

1 -2.081713996537 - 002 -2.081713996537 - 002 7.034491100931 - 001 
2 6.240287755500 - 004 -2.019311118929 - 002 7.040731388726 - 001 
3 -4.405942671467 - 005 -2.023717061616 - 002 7.040290794568 - 001 
4 5.406335388194 - 006 -2.023176428105 - 002 7.040344857844 - 001 
5 -9.689934463007 - 007 -2.023273327446 - 002 7.040335167781 - 001 
6 2.189459081506 - 007 -2.023251432867 - 002 7.040337357321 - 001 
7 -4.886759442277 - 008 -2.023256319633 - 002 7.040336868609 - 001 
8 -1.259169531957 - 009 -2.023256445536 - 002 7.040336856153 - 001 
9 2.215382693859 - 008 -2.023254230153 - 002 7.040337077575 - 001 

10 -3.699575480714 - 008 -2.023257929715 - 002 7.040336707723 - 001 
11 5.432548918994 - 008 -2.023252497194 - 002 7.040337250917 - 001 
12 -7.975547956536 - 008 -2.023260472750 - 002 7.040336453356 - 001 
13 1.182895543519 - 007 -2.023248643789 - 002 7.040337636252 - 001 
14 -1.688494712958 - 007 -2.023265528725 - 002 7.040335947764 - 001 
15 1.911763558659 - 007 -2.023246411118 - 002 7.040337859537 - 001 
16 4.555025903741 - 008 -2.023241856077 - 002 7.040338314953 - 001 
17 -1.615341149154 - 006 -2.023403390252 - 002 7.040322161629 - 001 
18 9.184600203531 - 006 -2.022484930232 - 002 7.040414007613 - 001 
19 -4.237003493705 - 005 -2.026721933740 - 002 7.039990307181 - 001 
20 1.809352162352 - 004 -2.008628412092 - 002 7.041799659492 - 001 

The elements and partial sums in two asymptotic expansions for the sixth (m 6) cosine Fourier 
coefficient C(6)f of f(x) = 1 /(x2 - x + 0.26). The numbers have an absolute accuracy of about 10-11. 

and the closest approximation in the final column (q = 7) differs from this by only 
6 X 10'-. These results should be treated only as a qualitative illustration. The 
problem of placing some bound on the validity of such results remains and, unless 
the user carries out some analytical or numerical investigation of the remainder 
term, he has no way of knowing how good or bad any particular result might be. 

5. The Euler-Maclaurin Expansion. One application of the Fourier coefficient 
asymptotic expansion is to derive the Euler-Maclaurin summation formula. This is 
described in Lyness and Ninham [3] for the case in which the singularities mentioned 
in Section 1 occur. It is described again in Lyness [4] using the same notation as 
used here in the regular case. Briefly, the displaced trapezoidal rule 

(5.1) Rfm.aJf = f + Z ), ta = (I + a)/2, !ai < 1X 

may be expressed in terms of the Fourier coefficients of f(x) by means of the Poisson 
summation formula 

(5.2) Rlm'alf - If = 2 E cos 2rrtaCrC")f + 2 E sin 2wrtaS(m")f. 
r-1 r-1 

If we substitute expressions (1.4) and (1.5) for the Fourier coefficients, the summation 
over index r may be carried out in terms of Bernoulli functions, leaving 

(5.3) RIm aX]f _ f = (t.) f( z1)(l)- f (0) + a I 

47j q. + 4a1 
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where the remainder term is given by 
co X0 

(5.4) Ev"'1af = 2 E cos 27rrtaClrm)f + 2 E sin 27rrtaS(/S)t. 
r-1 r-l 

It is interesting to note the effect of using an adjusted form of the Fourier co- 
efficient asymptotic expansion (4.19), (4.20) in (5.2) to obtain a correspondingly 
adjusted form of the Euler-Maclaurin expansion. This gives an additional term 
in (5.3), namely, 

eo X~~~~~~~~~~~~~~~~~~G 
cos 2irrta, Re (47ri Res (27rmr)) + E sin 27rrt, Im (41ri Res (2irmr)) 

r-1 r-1 
(5.5) 

Re E e-27rirta4lri Res (27rmr). 
r-1 

while the remainder term is altered by Al-mal to 

(5.6) Ev'4maI(LI) = 2 E cos 27rrtaC(vr)(L')f + 2 E sin 2rrtaS,Sm) (L')f. 
r-i r-I 

We now investigate the form of A", a for the case in which z = c is a simple pole. 
THEOREM 5.7. When z = c is a simple pole 

(5.7) Alm,a = Re 47ria-i/(e2Titae -2i 1). 

Proof. Since z = c is a simple pole we may use (4.16). Thus 

(5.8) Res (2irmr) = a1e2Ttmvc. 

The sum in (5.5) reduces to the sum of an infinite geometric progression; this may 
be summed to give (5.7). 

The next theorem is less mundane: 
THEOREM 5.9. If z- c is a simple pole, then 

(5.9) Atm,al = R lm. aJI 

where 

(5.10) +(x) = Re 47ia-2 

This may be proved in a direct manner. A proof which requires less manipulation 
is as follows. We may expand the denominator of (5.10) by the binomial theorem 
(since Im c > 0). This gives 

(5.11) q,(x) = Re 2 E e-2Tive2tvc4lria 
rv1 

Consequently, the Fourier coefficients of ?/(x) are given by 

(5.12) 14- = 0; 2C(r)k- Re 4ria-ie2Tir, 
2)S"' = -Re 4ra-le2irvc. 

Applying the Poisson summation formula (5.2), we find 
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m co 

2 ? cos 27rrtaC(rm)4 + 2 E sin 27rrtaS(t"')4 
(5.13) r- r-1 

- Re Z e2irt ae2Tirn 4ria-1. 

In view of (5.8), this is identical to (5.5). This establishes Theorem 5.9. 
Theorems 5.7 and 5.9 may be generalized for poles of order w > 1. To this end, 

we introduce a set of functions as follows: 
co 

(5.14) I,6O(X,c) _ = e2 ir(c-x 
r-1 

(5.1 5) VI. (x, c) = c) E (2w ir)ae2str S = 1, 2, 1. 

These may be evaluated,in closed form. The first is the sum of a geometric progression, 
namely 

(5.16) 60(x, c) = /(e-2rt(c) - 1) 

Subsequent functions may be obtained by differentiation. For example, 

a 2lrie 2 wi (c-x) 

(5.17) #A(x, c) = -dx o(X, c) (e 2Tti(c-x) 1)2 

It will be convenient to define the analytic continuation of these functions by 

(5.18) o(z, c) = l/(e2Ot(5c)- 1) it'(Zz c) = -d A,z c). 

This definition is valid for all z, except at poles, which occur when z - c is an integer. 
If the pole at z = c has order c, then 

ik' 

(5.19) Res (k) = etkc Ea_8_.(ikY'/s!. 
8'0 

Substitution of this value of Res (k) into (5.5) gives 
co w-1 

(5.20) A[mal= Re , E 47ria-,-1(2rimrye 2fir(0cta)/s! 

THEOREM 5.7'. If z = c is a pole of order X, then 
co-1 

(5.21) A{mal = Re 47ri E a-,-.imiC(Oa, mc)/s!. 
8 0 

THEOREM 5.9'. If z c is a pole of order w, then 

(5.22) A(m.,cI R_m=caJ01 

where 
c-i 

(5.23) +(x) = Re 4ri E a-,iI',(x,c)/s!. 
8-0 

The proofs of Theorems 5.7' and 5.9' follow the same lines as those of Theorems 
5.7 and 5.9. 
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The function 4(x) has an analytic continuation 
c-i 

(5.24) +(z) = 27ri E (a8,(l A,lc) )/ 
850 

where 

(5.25) tA*(z c)= l/(iET-) 1), 

and 

(5.26) *8(z, c) = (-1)8 d V?-(Z, C). 

We have already shown that IpO and by definition +(z) is clearly periodic with 
period 1. We now prove that ?(z) has a pole at z = c of precisely the same nature 
as the pole of f(z). 

THEOREM 5.27. f(z) - +(z) is regular in a neighborhood of z = c. 
Proof. In view of (5.18), Vo(z, c) has a pole of order 1. Thus, 41,,(z, c) may be 

expanded in the form 
co 

(5.27) 4'o(z, c) = 1 + E2f3(z C-) 2iri(z -c) +r=O 

Consequently, 

(5.28) V/',(z, c) = (-I) d8 i2r'z(z, c) = 8+ + i 03r(z- C). 

Substituting this into (5.24), we find 
Xo-1 ,o-1 

(5.29) +(z) a E a8,(z -c)-8-1 - 2iri E a-8-*#(Z, )/s! + E lr3(Z C)?. 
8-0 8 0 

The first term on the right coincides with the 'infinite part' of f(z) given by (4.12). 
The second term has poles only at the poles of t*(z, e). These occur where z - 

is an integer. Since ,u 5 0, the second term is regular at z = c, as is the third. Con- 
sequently, ?(z) - f(z) is regular at z = c, which establishes the theorem. 

The adjusted Euler-Maclaurin summation formula takes the form 

(5.30) Rim calf - If = 
B 

alJ 
)-f ' 

E2'(?+(L')f. 

The term A", al may be evaluated directly using (5.7). It is interpreted using (5.9) 
as R1" al+. By the previous theorem, +(z) - f(z) is regular at z = c. Thus the in- 
troduction of A"'m a corresponds precisely to the process of subtracting out the 
singularity. For example, the adjusted formula (5.30) may be written in the form 

(5.31) Rm IX - IX = E aB(t)X () + E- l 
q- q. + m.l(~t 

where x(x) = f(x) -(x). 
Suppose, for example, that Gregory's quadrature rule is used. After evaluating 

R` 'If and the approximations, based on finite differences, to f Q) (1) and f( ")(0), 
it may be realized that a nearby pole is important. Rather than subtracting out the 
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singularity and recommencing the calculation with x(x), all that is necessary to 
obtain an identical result is to subtract the number Am,a] given by (5.7). The author 
need hardly add that he does not recommend such a haphazard approach to numerical 
quadrature, but such a situation does illustrate the relation between the adjusted 
formula (5.30) and a process for subtracting out the singularity. 

6. Applications to Numerical Quadrature. Subtracting out a pair of complex 
conjugate poles would not normally be accomplished using +(x) as a subtraction 
function. In this section, we discuss the conventional approach to the problem 
and compare the two methods. 

The first thing that has to be done is to determine the location and nature of the 
nearby singularities. This in itself can be quite tedious. We suppose that this has 
been done and we have found simple poles at c = X + i,u and at c. We now can 
express f(x) in the form 

(6.1) (x) O~~~~~~~(x) (6.1) 1(x) = (x - c)(x - 

where the value of 0(c) is known, i.e., 

(6.2) 0(c) = A + iB, c=X + i.. 

A direct approach would be to choose a function h(x) such that h(z)- f(z) is 
regular at z = c and at z = E. The usual choice is 

(6.3) h(x) = Re 0(c) ! (x I A A + x 

An alternative choice, derived in the previous section, is 

(4 (x) = - Re e (C) 

(6.4) I 

2r f A [e27rP cos 2r(X - x) - 1 - Be2 , sin 2wr(X-x)- 

A 1 - 2e2,, cos 27r(X X) + (e2r)2 J 

In general, one evaluates Ih or Io analytically and applies the quadrature rule 
to the function f(x) - h(x) or f(x) - +(x). So far as the analytic evaluation of Ih 
is concerned, although this is straightforward, it is not quite as easy as the result 
I = 0. However, when one comes to apply the quadrature rule, in general the 
function f(x) - h(x) is usually easier to evaluate at an abscissa than the function 
f(x) - 4(x). Without stating the form of f(x), one cannot say for certain that this 
would be the case, particularly as it is normal to simplify the expression f(x) - h(x) 
or f(x) - 4(x) before applying the quadrature rule. However, to evaluate h(x) one is, 
in general, committed to evaluating (x - X) at each abscissa. To evaluate 4(x), 
both cos 2(x - X) and sin 2x(x - X) in addition have to be evaluated at each abscissa. 

A second inconvenience is that the function 4(z) has poles at all points z = n + 
X -? i,i, n = 0, ?:1, --2. Thus, while f(x) - ?(x) has no poles at X =? i/, it does have 
poles at X ? 1 -? i,u. If X is close to either 1 or 0, these additional poles may cause 
inconvenience in the numerical quadrature process. 

While in general the use of 4(x) rather than h(x) as a subtraction function has 
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TABLE 2 

Elements of two Romberg T-tables based on (6. 8) and (6.9), respectively. 

I mi T, Tt;-I T2'-S T3i-3 T1i-4 T.i-5 

O 1 8.5998 - 001 
1 2 8.9031 - 001 1.4737 - 000 
2 3 -3.1087 - 001 -1.2718 + 000 -1.6150 + 000 
3 4 1.9623 - 001 8.4821 - 001 1.5549 + 000 1.7662 + 000 
4 6 5.1533 - 002 -6.4226 - 002 -3.6837 - 001 -6.0878 - 001 -6.7664 - 001 
5 8 1.3721 - 002 -3.4895 - 002 -2.5118 - 002 3.1051.- 002 7.3707 - 002 8.5617 - 002 

O 1 -6.4190 - 002 
1 2 -1.9726 - 002 -4.9050 - 003 
2 3 -9.3333 - 003 -1.0189 - 003 -5.3314 - 004 
3 4 -5.3907 -003 -3.2173 -004 -8.9340 -005 -5.9753 -005 
4 6 -2.4470 - 003 -9.2088 - 005 -1.5540 - 005 -6.3153 - 006 -4.7885 - 006 
5 8 -1.3875 - 003 -2.5145 - 005 -2.8310 - 006 -7.5130 - 007 -3.8037 - 007 -3.1041 - 007 

little to recommend it, there are two special interrelated cases in which it might 
be useful. 

Firstly, for a general function, one might use the trapezoidal rule, or some rule 
closely related to the trapezoidal rule such as Simpson's rule or Romberg integration. 
In this case the first objection to using ?(x) related to ease of calculation disappears. In 
fact, one finds that, from a computational point of view, 4(x) is easier to use than h(x). 
This is because 

Rt ]( ) = k[m,l]f - R (i,l< 

(6.5) 2r O___ 

=- 
I,1 - Re- 

Instead of evaluating the function f(x) - +(x) at each of the m + 1 abscissas, one 
adjusts the sum of m + 1 function values of f(x) by a term whose evaluation is equiv- 
alent to a single function evaluation of +(x). In fact, if a regular sequence of values 
of m is used, only one or two exponentials are required for all values of m for this 
additional term. No such simplification is known to the author for the evaluation 
of Rml(f - h), which requires m + 1 function values of f(x) - h(x). However, 
the second objection mentioned above, that relating to additional induced poles, is 
still valid, and this procedure would be useful if the pole is significantly closer to 
the real axis than to either of the lines Re (z) = 0 or Re (z) = 1. 

As an example, we consider the evaluation of If = f f(x) dx, where 

(6.6) f(x) = 1/(x2 - x + 0.26), 

using Romberg integration with mesh ratios 

(6.7) {Mil = {1, 2, 3, 4, 6, 8}, i = 0, 1, 2, ..., 5. 

In the first half of Table 2, the first column of the T-table is based on 

(6.8) TX = R"" .1f1 

In the second half of Table 2, the first column is based on 

(6.9) To = R """f - _Ami. 

Here the adjustment term, given by (5.7) is 
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(6.10) A[m"l" 20r/((-1)me1r/5 - 1). 

In both tables, the rest of the T-table is calculated from the first column in the con- 
ventional manner. In both cases, we have listed, in place of T, the signed relative error 

The second special case is that in which f(x) is analytic and has period I. In this 
case, it is natural to use a quadrature rule which takes advantage of the periodicity 
of the function and so one would be inclined to use a subtraction function which 
has the same property, i.e., k(x) and not h(x). 

We may be more definite than this. If f(x) is analytic and periodic, then f(z) has 
poles of a similar nature at z = n + X i ia,, and +(z) subtracts out all these poles. 
The second objection is no longer valid; rather, the usually inconvenient property 
becomes an advantage. In addition, the evaluation of a function f(x) of this 
nature almost certainly involves the evaluation of cos 2irx or sin 2irx. By a 
proper arrangement of the interval of integration, the same values of sin 27rx 
and cos 2irx may be used in the evaluations of both 1(x) and +(x). Thus, the first 
objection need not apply. However, in such cases it is conventional to use the trape- 
zoidal rule, and as indicated above, +(x) need not be calculated at each abscissa. 

Finally, we mention that this subtraction function can be extremely convenient 
when applied to the MIPS method, Lyness (4], for calculating Fourier coefficients. 
This application is described in a preceding paper in this issue. 

APPENDIX. F.C.A.E. for Logarithmic-Algebraic Singularities. An asymptotic 
expansion similar to the one stated in Theorem 1.12 is valid in the case in which 1(x) 
has an algebraic logarithmic singularity at a terminal point. We treat the function 

(A.1) f(z) = In (x - a)(x - a)a(b - x)h(x), a > 0, , > -1, 
= ln (x- a)(x- a)"O(x). 

The derivation of the expansion is strtucturally similar to that given in Section 2. 
In this Appendix, we note briefly the difference in detail. 

The coefficients that occur involve the digamma function V6(x) defined by 

r(z) VI(z) r r'(z) = d fo e-'tz51 dt 
(A.2) 

= f e-ttzl Intdt. 

We again expand the regular part of f(x) at x = a as a Taylor series to give 

(A.3) g(z) = In (z- a)(z - a)cl E tA(a)(z- 
q-0 (q- ) 

The terms in the expansion, as in Lemma 2.4, come from the following evaluation 
of an integral: 

a+i0 
iI .a ra2i;ialc 7 

(A.4) g(z)e; dz _ ! ei/eki+ Jr In y + 7ryq+ae-hy dy. 
The (q - I )! "; 2 

The term (In y + ir/2) is the value of In (z - a) at z = a + iy. 
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The final integral may be manipulated using (A.1) to give 

f n (I y + 2 y+e- dy = k+a+lf (In t- In k + t - dt 

(q + - + 1) I,(q + a + 1)-ln k + - ] 

The part of the expansion involving derivatives of A(x) at x = a contains both terms 
in kVI` and terms in ln k k''. These are 

a+ico 

g(z)e' dz 
(A.6) 

=e a;/2ei2a r1(a + q + 1)h(q + a + )-Ink + i7r/21. q..o q. k'21 

The other part of the expansion is formally the same as in (1.12); however, in this 
case, +(x) = ln (x - a)(x - a)Yh(x). 

The verification of this result depends on establishing lemmas corresponding 
to Lemmas 2.1, 2.2, and 2.3. Lemma 2.1 is unaltered. Lemmas 2.2 and 2.3 have to 
be adjusted. The adjustment involves establishing the order of a function analogous 
to the incomplete gamma function (2.13). This function is 

co 3 + 1,x)f te-' In t dt r -/O(xoe-x Inx), x -> . 

With this result, the derivation of the analogues of these lemmas may proceed along 
the same lines as in Section 2. The results are 

I2 O(ka'pl In k), I3 -,. O(k`1 In ke kL). 

Thus, the order of the remainder term is established and coincides as before with 
the order of the first omitted term in the expansion. 
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